Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.153
1.
J Colloid Interface Sci ; 668: 678-690, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38710124

Aerogels, as a unique porous material, are expected to be used as insulation materials to solve the global environmental and energy crisis. Using chitosan, citric acid, pectin and phytic acid as raw materials, an all-biomass-based aerogel with high modulus was prepared by the triple strategy of ionic, physical and chemical cross-linking through directional freezing technique. Based on this three-dimensional network, the aerogel exhibited excellent compressive modulus (24.89 ± 1.76 MPa) over a wide temperature range and thermal insulation properties. In the presence of chitosan, citric acid and phytic acid, the aerogel obtained excellent fire safety (LOI value up to 31.2%) and antibacterial properties (antibacterial activity against Staphylococcus aureus and Escherichia coli reached 81.98% and 67.43%). In addition, the modified aerogel exhibited excellent hydrophobicity (hydrophobic angle of 146°) and oil-water separation properties. More importantly, the aerogel exhibited a biodegradation rate of up to 40.31% for 35 days due to its all-biomass nature. This work provides a green and sustainable strategy for the production of highly environmentally friendly thermal insulation materials with high strength, flame retardant, antibacterial and hydrophobic properties.


Anti-Bacterial Agents , Chitosan , Citric Acid , Escherichia coli , Gels , Staphylococcus aureus , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gels/chemistry , Chitosan/chemistry , Citric Acid/chemistry , Biomass , Hydrophobic and Hydrophilic Interactions , Porosity , Phytic Acid/chemistry , Pectins/chemistry , Cross-Linking Reagents/chemistry , Microbial Sensitivity Tests , Surface Properties , Particle Size , Temperature
2.
Microb Biotechnol ; 17(5): e14443, 2024 May.
Article En | MEDLINE | ID: mdl-38722820

Pectin structures have received increasing attention as emergent prebiotics due to their capacity to promote beneficial intestinal bacteria. Yet the collective activity of gut bacterial communities to cooperatively metabolize structural variants of this substrate remains largely unknown. Herein, the characterization of a pectin methylesterase, BpeM, from Bifidobacterium longum subsp. longum, is reported. The purified enzyme was able to remove methyl groups from highly methoxylated apple pectin, and the mathematical modelling of its activity enabled to tightly control the reaction conditions to achieve predefined final degrees of methyl-esterification in the resultant pectin. Demethylated pectin, generated by BpeM, exhibited differential fermentation patterns by gut microbial communities in in vitro mixed faecal cultures, promoting a stronger increase of bacterial genera associated with beneficial effects including Lactobacillus, Bifidobacterium and Collinsella. Our findings demonstrate that controlled pectin demethylation by the action of a B. longum esterase selectively modifies its prebiotic fermentation pattern, producing substrates that promote targeted bacterial groups more efficiently. This opens new possibilities to exploit biotechnological applications of enzymes from gut commensals to programme prebiotic properties.


Carboxylic Ester Hydrolases , Feces , Malus , Pectins , Prebiotics , Malus/microbiology , Pectins/metabolism , Feces/microbiology , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Fermentation , Humans , Bifidobacterium longum/metabolism , Bifidobacterium longum/enzymology , Gastrointestinal Microbiome , Bifidobacterium/enzymology , Bifidobacterium/metabolism
3.
Carbohydr Polym ; 337: 122139, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710550

A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked ß-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.


HMGB1 Protein , NF-kappa B , Non-alcoholic Fatty Liver Disease , Pectins , Rosa , Signal Transduction , Toll-Like Receptor 4 , Animals , Rosa/chemistry , Toll-Like Receptor 4/metabolism , HMGB1 Protein/metabolism , NF-kappa B/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction/drug effects , Mice , Pectins/pharmacology , Pectins/chemistry , Pectins/isolation & purification , Male , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Oxidative Stress/drug effects
4.
Plant Physiol Biochem ; 210: 108621, 2024 May.
Article En | MEDLINE | ID: mdl-38604012

To enhance the postharvest quality of avocado (Persea americana Mill.) fruit, this study investigates alterations in cell wall metabolism and reactive oxygen species (ROS) metabolism during near-freezing temperature (NFT) storage, and explores their impact on fruit softening. The fruit was stored at 25 °C, 5 °C, 2 °C, and NFT, respectively. NFT storage retarded firmness loss and chilling injury in comparison with 25 °C, 5 °C, and 2 °C. NFT storage delayed the decrease of ionic-soluble pectin (ISP) and cellulose (CLL) contents by suppressing cell wall degradation enzyme activities. Correlation analysis showed that cell wall degradation enzyme activities were positively correlated to rates of ethylene release and respiration. Moreover, NFT storage maintained higher levels of DPPH and ABTS scavenging abilities, activities of superoxide dismutase, peroxidase, and catalase, as well as ascorbate-glutathione cycle (ascorbic acid, glutathione, glutathione disulfide, ascorbate peroxidase, cycle-related enzymes), thereby inhibited the increase of ROS content, malondialdehyde content, and cell membrane permeability. Fruit firmness and chilling injury were correlated with the contents of hydrogen (H2O2), superoxide anion (O2.-), ISP, and CLL. These results suggested that NFT could suppress fruit softening and chilling injury by inhibiting cell wall degradation through delaying respiration and ethylene production and suppressing ROS production via activation of antioxidant systems, thereby maintaining quality and prolonged storage life during avocado fruit storage.


Cell Wall , Fruit , Persea , Reactive Oxygen Species , Persea/metabolism , Cell Wall/metabolism , Reactive Oxygen Species/metabolism , Fruit/metabolism , Food Storage/methods , Cold Temperature , Freezing , Ethylenes/metabolism , Pectins/metabolism , Cellulose/metabolism
5.
Int J Biol Macromol ; 267(Pt 1): 131292, 2024 May.
Article En | MEDLINE | ID: mdl-38580015

To enhance the water-resistance and antibacterial properties of KGM films, mandarin oil (MO), was directly emulsified by pectin and then dispersed to the KGM matrix. The effect of MO concentration (0, 0.5, 1.0, 1.5, and 2 wt%) on the performance of the film-forming emulsions as well as the emulsion films was investigated. The results revealed that pectin could encapsulate and protect MO, and KGM as film matrix could further contributed to the high stability of the film-forming emulsions. The FT-IR, XRD, and SEM suggested that MO stabilized by pectin was uniformly distributed in the KGM matrix. The compatibility and good interaction between KGM and pectin contributed to highly dense and compact structure. Furthermore, increasing the concentration of MO effectively improved water-resistance, oxygen barrier, and antimicrobial activity of the KGM based films. The 1.5 wt% MO loaded KGM film had the highest tensile strength (72.22 MPa) and water contact angle (θ = 95.73°), reduced the WVP and oxygen permeability by about 25.8 % and 32.8 times, respectively, prolonged the shelf life of strawberries for 8 days. As demonstrated, the 1.5 wt% MO-loaded KGM film has considerable potential for high-performance natural biodegradable active films to ensure food safety and reduce environmental impacts.


Emulsions , Fruit , Mannans , Pectins , Pectins/chemistry , Emulsions/chemistry , Fruit/chemistry , Mannans/chemistry , Permeability , Food Packaging/methods , Food Preservation/methods , Tensile Strength , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Water/chemistry
6.
Int J Biol Macromol ; 267(Pt 1): 131278, 2024 May.
Article En | MEDLINE | ID: mdl-38582459

Four modified hawthorn pectin fractions (MHPs), named MHP-30, MHP-50, MHP-70 and MHP-90, were obtained by ultrasonic-assisted pectin methyl esterase modification and gradient ethanol precipitation. The results indicated that all four MHPs were composed of galacturonic acid, galactose, xylose, arabinose, glucose and mannose in different proportions. With the increase of the ethanol concentration, the molecular weight, esterification degree and galacturonic acid content of MHPs all decreased, whereas the arabinose content and branching degree increased. The structural characterization from XRD, SEM, and FT-IR showed that four MHPs exhibited amorphous structure, similar functional groups, diverse surface morphologies. Besides, in vitro antioxidant assays confirmed that MHP-70 and MHP-90 exhibited stronger total antioxidant activities than MHP-30 and MHP-50. The results of simulated saliva-gastrointestinal digestion showed that the molecular weight of MHP-70 and MHP-90 remained stable, yielded small amounts of reducing sugars, and were resistant to digestion in the human upper digestive tract. Overall, MHP-70 and MHP-90 shown great potential as novel natural antioxidants, which are expected to be good carbon sources for the utilization of intestinal microorganisms.


Antioxidants , Crataegus , Ethanol , Pectins , Pectins/chemistry , Pectins/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Ethanol/chemistry , Crataegus/chemistry , Digestion , Molecular Weight , Humans , Chemical Precipitation , Spectroscopy, Fourier Transform Infrared
7.
Food Funct ; 15(9): 4887-4893, 2024 May 07.
Article En | MEDLINE | ID: mdl-38597504

Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this study, a combination of gradual ethanol precipitation and DEAE-Sepharose Fast Flow chromatography was used to isolate several fractions from MCP. The ability of these fractions to antagonize galectin-8 function was studied as well as the primary structure and initial structure-function relationship of the major active component MCP-30-3. The results showed that MCP-30-3 (168 kDa) was composed of Gal (13.8%), GalA (63.1%), GlcA (13.0%), and Glc (10.1%). MCP-30-3 could specifically bind to galectin-8, with an MIC value of 0.04 mg mL-1. After MCP-30-3 was hydrolyzed by ß-galactosidase or pectinase, its binding activity was significantly reduced. These results provide new insights into the interaction between MCP structure and galectin function, as well as the potential utility in the development of functional foods.


Galectins , Pectins , Pectins/chemistry , Pectins/pharmacology , Galectins/metabolism , Galectins/chemistry , Humans , Citrus/chemistry , Galectin 3/metabolism , Blood Proteins/chemistry , Blood Proteins/metabolism , Protein Binding , Polygalacturonase/chemistry , Polygalacturonase/metabolism
8.
Int J Biol Macromol ; 267(Pt 1): 131469, 2024 May.
Article En | MEDLINE | ID: mdl-38604432

Pectic polysaccharide is a bioactive ingredient in Chrysanthemum morifolium Ramat. 'Hangbaiju' (CMH), but the high proportion of HG domain limited its use as a prebiotic. In this study, hot water, cellulase-assisted, medium-temperature alkali, and deep eutectic solvent extraction strategies were firstly used to extract pectin from CMH (CMHP). CMHP obtained by cellulase-assisted extraction had high purity and strong ability to promote the proliferation of Bacteroides and mixed probiotics. However, 4 extraction strategies led to general high proportion of HG domain in CMHPs. To further enhance the dissolution and prebiotic potential of CMHP, pectinase was used alone and combined with cellulase. The key factor for the optimal extraction was enzymolysis by cellulase and pectinase in a mass ratio of 3:1 at 1 % (w/w) dosage. The optimal CMHP had high yield (15.15 %), high content of total sugar, and Bacteroides proliferative activity superior to inulin, which was probably due to the cooperation of complex enzyme on the destruction of cell wall and pectin structural modification for raised RG-I domain (80.30 %) with relatively high degree of branching and moderate HG domain. This study provided a green strategy for extraction of RG-I enriched prebiotic pectin from plants.


Bacteroides , Chrysanthemum , Pectins , Pectins/chemistry , Chrysanthemum/chemistry , Cell Proliferation/drug effects , Cellulase/chemistry , Cellulase/metabolism , Solubility , Polygalacturonase/chemistry , Polygalacturonase/metabolism
9.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38579009

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Adhesion/genetics , Pectins/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Cell Wall/metabolism
10.
Int J Biol Macromol ; 267(Pt 2): 131565, 2024 May.
Article En | MEDLINE | ID: mdl-38614184

Endopolygalacturonases are crucial pectinases known for their efficient and sustainable pectin depolymerization activities. The present study identified a novel gene encoding endopolygalacturonase from an acidic mine tailing metagenome. The putative gene showed a maximum identity of 67.55 % with an uncharacterized peptide sequence from Flavobacterium fluvii. The gene was cloned and expressed in a heterologous host, E. coli. Biochemical characterization of the novel endopolygalacturonase enzyme variant (EPHM) showed maximum activity at 60 °C and at 5.0 pH, while retaining 50 % activity under the temperature and pH range of 20 °C to 70 °C for 6 h, and 3.0 to 10.0 for 3 h, respectively. The enzyme exhibited tolerance to different metal ions. EPHM was characterized for the depolymerization of methylated pectin into pectic oligosaccharides. Further, its utility was established for fruit juice clarification, as endorsed by high transmittance, significant viscosity reduction, and release of reducing sugars in the treated fruit juice samples.


Fruit and Vegetable Juices , Pectins , Polygalacturonase , Pectins/metabolism , Pectins/chemistry , Polygalacturonase/metabolism , Polygalacturonase/chemistry , Polygalacturonase/genetics , Fruit and Vegetable Juices/analysis , Hydrogen-Ion Concentration , Temperature , Cloning, Molecular , Polymerization , Oligosaccharides/chemistry
11.
Molecules ; 29(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38611703

In cutaneous wound healing, an overproduction of inflammatory chemokines and bacterial infections impedes the process. Hydrogels can maintain a physiologically moist microenvironment, absorb chemokines, prevent bacterial infection, inhibit bacterial reproduction, and facilitate wound healing at a wound site. The development of hydrogels provides a novel treatment strategy for the entire wound repair process. Here, a series of Fructus Ligustri Lucidi polysaccharide extracts loaded with polyvinyl alcohol (PVA) and pectin hydrogels were successfully fabricated through the freeze-thaw method. A hydrogel containing a 1% mixing weight ratio of FLL-E (named PVA-P-FLL-E1) demonstrated excellent physicochemical properties such as swellability, water retention, degradability, porosity, 00drug release, transparency, and adhesive strength. Notably, this hydrogel exhibited minimal cytotoxicity. Moreover, the crosslinked hydrogel, PVA-P-FLL-E1, displayed multifunctional attributes, including significant antibacterial properties, earlier re-epithelialization, production of few inflammatory cells, the formation of collagen fibers, deposition of collagen I, and faster remodeling of the ECM. Consequently, the PVA-P-FLL-E1 hydrogel stands out as a promising wound dressing due to its superior formulation and enhanced healing effects in wound care.


Ligustrum , Pectins , Pectins/pharmacology , Polyvinyl Alcohol , Polysaccharides/pharmacology , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Collagen Type I , Chemokines , Hydrogels
12.
BMC Plant Biol ; 24(1): 295, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632520

The extraction of bast fibres such as jute from plant stems involves the removal of pectin, hemicellulose, and other noncellulosic materials through a complex microbial community. A consortium of pectinolytic bacterial strains has been developed and commercialized to reduce the retting time and enhance fibre quality. However, there are currently no studies on jute that describe the structural changes and sequential microbial colonization and pectin loss that occur during microbe-assisted water retting. This study investigated the stages of microbial colonization, microbial interactions, and sequential degradation of pectic substances from jute bark under controlled and conventional water retting. The primary occurrence during water retting of bast fibres is the bacterially induced sequential breakdown of pectin surrounding the fibre bundles. The study also revealed that the pectin content of the jute stem significantly decreases during the retting process. These findings provide a strong foundation for improving microbial strains for improved pectinolysis with immense industrial significance, leading to a sustainable jute-based "green" economy.


Corchorus , Corchorus/metabolism , Water/metabolism , Pectins/metabolism , Bacteria/metabolism
13.
Sci Rep ; 14(1): 9182, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649422

In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.


Citrus , Hexuronic Acids , Pectins , Pectins/chemistry , Pectins/isolation & purification , Citrus/chemistry , Viscosity , Particle Size , Microwaves , Spectroscopy, Fourier Transform Infrared , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Chemical Fractionation/methods , Chemical Phenomena , Fruit/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Phenols/analysis , Phenols/chemistry , Phenols/isolation & purification , Esterification
14.
Carbohydr Polym ; 336: 122122, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38670769

Pectin interacts with fibronectin (FN), a modular protein in the extracellular matrix. This interaction is significant as FN plays a pivotal role by binding to the receptor integrin α5ß1. However, the molecular mechanism underlying the pectin-FN interaction and its impact on integrin binding remains unknown. In this study, water-soluble pectins (WSPs) were extracted from three different pectin sources and subsequently characterized. These included Citrus WSP, which primarily comprises the homogalacturonan region, and Kaki and Yuzu WSPs, both of which are rich in rhamnogalacturonan regions. We investigated the molecular interactions between these WSPs and two FN fragments, Anastellin and RetroNectin, using surface plasmon resonance analysis. Citrus WSP exhibited a notable binding affinity to FN, with a dissociation constant (KD) of approximately 10-7 M. In contrast, Kaki and Yuzu WSPs displayed comparatively weaker or negligible binding affinities. The binding reactivity of Citrus WSP with FN was notably diminished following the enzymatic removal of its methyl-ester groups. Additionally, Citrus WSP disrupted the binding of integrin ß1 to RetroNectin without altering the affinity, despite its minimal direct binding to integrin itself. This study furthers our understanding of the intricate pectin-FN interaction and sheds light on their potential physiological relevance and impact on cellular responses.


Fibronectins , Integrin beta1 , Pectins , Protein Binding , Pectins/metabolism , Pectins/chemistry , Fibronectins/metabolism , Fibronectins/chemistry , Integrin beta1/metabolism , Citrus/chemistry , Citrus/metabolism , Humans , Surface Plasmon Resonance
15.
Carbohydr Polym ; 336: 122114, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38670775

5-aminolevulinic acid (5-ALA) has been fully demonstrated as a biodegradable, without resistance, and pollution-free pesticide. However, the lack of targeting and the poor adhesion result in a low utilization rate, limiting its practical application. Herein, a dew-responsive polymer pro-pesticide Pec-hyd-ALA was successfully synthesized by grafting 5-ALA onto the pectin (PEC) backbone via acid-sensitive acylhydrazone bonds. When the pro-pesticide is exposed to acid dew on plant surfaces at night, 5-ALA is released and subsequently converted to photosensitize (Protoporphyrin IX, PpIX)in plant cells, leading to its accumulation and promoting photodynamic inactivation (PDI). An inverted fluorescence microscope has verified the accumulation of tetrapyrrole in plant cells. In addition, the highly bio-adhesive PEC backbone effectively improved the wetting and retention of 5-ALA on leaves. The pot experiment also demonstrated the system's control effect on barnyard grass. This work provides a promising approach to improving the herbicidal efficacy of 5-ALA.


Aminolevulinic Acid , Herbicides , Pectins , Photosensitizing Agents , Pectins/chemistry , Herbicides/chemistry , Herbicides/pharmacology , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Protoporphyrins/chemistry , Protoporphyrins/pharmacology , Plant Leaves/chemistry , Wettability
16.
J Infect Dev Ctries ; 18(3): 407-419, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38635613

INTRODUCTION: Intestinal infections are a significant health issue; antibiotics are essential in treating acute intestinal infections. However, evidence in the literature shows that the excessive use of antibiotics has created many threats to human health. This work aimed to study the impact of apple pectin in combination with antibiotics on treating patients with amebiasis and dysentery. METHODOLOGY: Patients suffering from acute intestinal diseases (amebiasis and dysentery) were treated with traditional antibiotic therapy and a new formula containing antibiotics with low and high methoxylated apple pectin in a randomized block design. Four clinical trials were performed at the Infection Disease Hospital from 1998 until 2013. RESULTS: The study demonstrated that the antibiotic-pectin formulae (APF) significantly reduced the severity of acute intestinal infection diseases and allowed patients to recover faster than conventional treatment. APF reduced the patient's stay in the hospital by 3.0 ± 1.0 days. The clinical trial findings demonstrated that applying APF in intestinal infection diseases helped maintain a constant concentration of the antibiotic in the blood and accelerated the clinical recovery of the patients. CONCLUSIONS: It was concluded that using pectin with antibiotics could improve clinical outcomes in patients with acute infectious diseases. Research on elucidating the mechanisms of pectin digestion in the colon, polyphenol content, and its role in dysbiosis recovery, etc., is also considered.


Amebiasis , Dysentery, Amebic , Dysentery , Humans , Anti-Bacterial Agents/therapeutic use , Pectins/therapeutic use , Dysentery/drug therapy , Dysentery, Amebic/drug therapy , Amebiasis/drug therapy
17.
Carbohydr Polym ; 335: 122010, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38616103

The mesocarp (albedo) of passion fruit is considered a waste product but rich in soluble fibers, especially pectins. Biological activity and health benefits of pectins have recently emerged, especially in colorectal cancer and attenuating inflammation. Pectin conventional extraction often uses mineral acids, which can be hazardous to the environment, and alternatives can be costly. Here, we assessed a high-temperature and pressure method to extract pectin from the passion fruit albedo and evaluated the differences from the water-soluble fractions extracted. HPSEC, HPAEC, FTIR-ATR, and HSQC-NMR were performed to identify and confirm the highly methylated homogalacturonan structures. The heat-modified samples showed a decreased molecular size compared to the untreated sample. Colorectal cancer cell lines showed reduced viability after being treated with different doses of modified samples, with two of them, LW-MP3 and 4, showing the most potent effects. All samples were detected inside cells by immunofluorescence assay. It was observed that LW-MP3 and 4 upregulated the p53 protein, indicating cell-cycle arrest and the cleaved caspase-9 in one of the cell lines, with LW-MP4 enhancing cell death by apoptosis. Since the modified samples were composed of hydrolyzed homogalacturonans, those probably were the responsible structures for these anti-cancer effects.


Colorectal Neoplasms , Passiflora , Fruit , Temperature , Polysaccharides/pharmacology , Pectins/pharmacology
18.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38674109

Although several therapeutic effects have been attributed to wild blackthorn fruits, their use is still negligible. Purification of the antioxidant-active fraction, obtained from wild blackthorn fruits by hot ammonium oxalate extraction (Ao), yielded seven fractions after successive elution with water, sodium chloride and sodium hydroxide solutions. The purified fractions differ in carbohydrates, proteins, and phenolics. About 60% of the applied Ao material was recovered from the column, with the highest yields eluted with 0.25 M NaCl solution, accounting for up to 70 wt% of all eluted material. Analyses have shown that two dominant fractions (3Fa and 3Fb) contain 72.8-81.1 wt% of galacturonic acids, indicating the prevalence of homogalacturonans (HG) with a low acetyl content and a high degree of esterification. The low content of rhamnose, arabinose and galactose residues in both fractions indicates the presence of RG-I associated with arabinogalactan. In terms of yield, the alkali-eluted fraction was also significant, as a dark brown-coloured material with a yield of ~15 wt% with the highest content of phenolic compounds of all fractions. However, it differs from other fractions in its powdery nature, which indicates a high content of salts that could not be removed by dialysis.


Antioxidants , Fruit , Oxalates , Polysaccharides , Antioxidants/pharmacology , Antioxidants/chemistry , Fruit/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Oxalates/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pectins/chemistry , Phenols/chemistry , Phenols/analysis , Galactans/chemistry
19.
Molecules ; 29(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38675700

Crispbread is gaining popularity as a healthy snack or bread substitute. This is a lightweight dry type of flat food that stays fresh for a very long time due to its lack of water and usually contains different types of grain flour, including gluten-containing wheat or rye flour. The incorporation of legume purée into crispbread represents an innovative approach to enhancing the nutritional profile and taste of the product. The rheological properties of various legume purées (chickpea, white bean, black bean, and red bean) mixed with citrus pectin were examined, revealing significant differences in fluid behavior and viscosity. Crispbread formulations were analyzed for water content and activity, color, structure, FT-IR spectra, water vapor adsorption isotherms, and sensory evaluation. The results showed the possibility of obtaining crispbread based on the purée of legumes and citrus pectin. Crispbread enriched with red bean purée exhibited low water activity (0.156) and water content (3.16%), along with a continuous porous structure, and received the highest sensory evaluation score among the products. These findings can be treated as a basis for the development of other innovative recipes and combinations using legumes.


Fabaceae , Rheology , Fabaceae/chemistry , Vegetables/chemistry , Viscosity , Pectins/chemistry , Pectins/analysis , Flour/analysis , Bread/analysis , Spectroscopy, Fourier Transform Infrared , Water/chemistry
20.
Food Res Int ; 184: 114245, 2024 May.
Article En | MEDLINE | ID: mdl-38609224

The effects of ultrasound pretreatment (20 kHz, 30 W/L) on mulberries' texture, microstructure, characteristics of cell-wall polysaccharides, moisture migration, and drying quality were investigated over exposure times ranging from 15 to 45 min. Ultrasound induced softening of mulberry tissue, accompanied by an increase in water-soluble pectin and a decrease in chelate-soluble pectin and Na2CO3-soluble pectin concentrations. Noticeable depolymerization of the pectin nanostructure was observed in the pretreated mulberries, along with a decrease in molecular weight, attributed to side-chain structure cleavage. Ultrasound loosened the cell wall structure, increased free water content and freedom, thereby reducing water diffusion resistance. Ultrasound pretreatment reduced drying time by 11.2 % to 23.3 % at various processing times compared to controls. Due to significantly enhanced drying efficiency, the optimal pretreatment time (30 min) yielded dried mulberries with higher levels of total phenolics and total anthocyanins, along with an increased antioxidant capacity. The results of this study provide insights into the mechanisms by which ultrasound pretreatment can effectively enhance the mulberry drying process.


Morus , Nanostructures , Anthocyanins , Polysaccharides , Pectins , Water
...